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Abstract
The noncompact homogeneous sl(3) invariant spin chains are considered. We
show that the transfer matrix with generic auxiliary space is factorized into the
product of three sl(3) invariant commuting operators. These operators satisfy
the finite difference equations in the spectral parameters which follow from the
structure of the reducible sl(3) modules.

PACS numbers: 02.30.Tb, 05.50.+q, 75.10.Pq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we address the problem of constructing the Baxter Q-operators for the integrable
sl(3) invariant noncompact spin magnet. As is well known, the spin magnets can be solved
with the help of the algebraic Bethe ansatz (ABA) [1, 2], or its extension to the symmetry
groups of higher rank, the nested Bethe ansatz [3–5]. Alternative approaches for solving spin
chain models are the method of Baxter Q-operators [6] and the separation of variables [7]. The
latter, however, are not used as widely as the ABA method. It is to a great extent related to the
fact that no regular method exists for constructing the Baxter operators or the representation
of separated variables for the spin chains with symmetry group of the rank greater than 1. On
the other hand, these methods can be used to study models which do not belong to the range
of applicability of the ABA, such as the Toda chain, the sl(2, C) and sl(2, R) noncompact
spin magnets, the modular XXZ magnet. The Baxter operators for these models and some
others were constructed in [8–21]. For example, Baxter operators for a different kind of
sl(2) magnets can be obtained with the help of the Pasquier–Gaudin trick [8]. However, the
generalization of this method to the higher rank groups (sl(N)) seems to be quite problematic.
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In the present paper we develop a method to construct Baxter Q-operators for the sl(3) spin
magnet. This model is well studied—the nested Bethe ansatz had been developed by Kulish
and Reshetikhin [4], the separation of variables was constructed in the works of Sklyanin
[22, 23]. The connection of the nested Bethe ansatz with the Baxter equation was investigated
by Pronko and Stroganov [24].

The approach presented here generalizes the method developed in [25] for the sl(2) spin
magnet. Our analysis is based on two main ingredients. First is the factorization property of
the R-operator acting on the tensor product of two generic sl(3) modules [26]. We will show
that this property results in the factorization of the transfer matrices into the product of three
operators (Baxter operators). The latter depends on a spectral parameter and commutes with
each other. The second ingredient is the analysis of the properties of the transfer matrices with
a reducible auxiliary space. This approach of deriving the Baxter equation was suggested by
Bazhanov, Lukyanov and Zamolodchikov in [10, 28] who constructed Baxter operators for
the quantum KdV model (see also works by Antonov, Feigin [27] and Bazhanov, Hibberd,
Khoroshkin [29], where this method was applied for the models with Uq(ŝl2) and Uq(ŝl3)

symmetry, respectively.) We will show that the transfer matrices with a finite-dimensional
auxiliary space can be represented by a certain combination of generic transfer matrices. Such
a representation is in one to one correspondence with the decomposition of the reducible sl(3)

modules onto irreducible ones. Together with the factorization of generic transfer matrices
into the product of three operators it gives rise to a certain type of self-consistency equations
involving the Baxter operators and the auxiliary transfer matrices. Thus the structure of the
Baxter equation reflects the structure of the decomposition of the reducible sl(3) modules
onto irreducible ones. Although we consider the sl(3) invariant spin chain, it seems that this
method can provide one with a regular method to construct Baxter operators for quantum
sl(N) invariant spin magnets.

The paper is organized as follows. In section 2 we introduce the necessary notations and
describe the model. In section 3 we prove the factorization of a generic transfer matrix into the
product of Baxter operators. In section 4 we analyse the structure of reducible sl(3) modules
and obtain the expression for the auxiliary transfer matrices in terms of the generic ones. In
section 5 the derivation of the Baxter equation is presented and section 6 contains concluding
remarks. The appendices contain some technical details.

2. Preliminaries

The fundamental object in the theory of lattice integrable models is the R-operator. It is
a linear operator which depends on a spectral parameter u and acts on the tensor product
of two s�(3) modules (representations of the s�(3) algebra). The R-operator satisfies the
Yang–Baxter relation (YBR)

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u). (2.1)

The operators in (2.1) act on the tensor product of the sl(3) modules, V1 ⊗ V2 ⊗ V3, and, as
usual, indices ik indicate that the operator Rik acts nontrivially on the tensor product Vi ⊗Vk .
We shall consider the sl(3) invariant solutions of the YBR.

Throughout the paper we shall use the following realization of the sl(3) module V. As
the vector space V we take the space of polynomials of three complex variables, C[x, y, z].
The generators of the sl(3) algebra take the form of differential operators

L21 = −∂x, L31 = −∂y, L32 = −∂z − x∂y, (2.2a)

L12 = x2∂x + x(y∂y − z∂z) + y∂z + m1x, (2.2b)



Baxter operators for the noncompact quantum sl(3) invariant spin chain 13173

L13 = y(y∂y + z∂z + x∂x) − xz2∂z + (m1 + m2)y − m2xz, (2.2c)

L23 = z2∂z − y∂x + m2z, (2.2d)

H1 = 2x∂x + y∂y − z∂z + m1, H2 = 2z∂z + y∂y − x∂x + m2. (2.2e)

They satisfy the standard sl(3) commutation relations

[LabLcd ] = δcbLad − δadLcb, (2.3)

where

L11 = 2
3H1 + 1

3H2, L22 = 1
3H2 − 1

3H1, L33 = − 1
3H1 − 2

3H2. (2.4)

The module V is completely determined by the eigenvalues of the Cartan generators H1,H2

on the lowest weight vector � = 1, (H1� = m1�,H2� = m2�) and will be denoted as Vm,
where m = (m1,m2). Unless neither of numbers 2 −m1 −m2, 1 −m1 or 1 −m2 is a positive
integer, the module Vm is irreducible. The reducible modules will play an important role in
our analysis and will be discussed in section 4.

We shall also use another notation for the sl(3) modules, Vσ ≡ Vm. Instead of the
weights m1,m2 one can label a sl(3) module V by the three vector σ = (σ1, σ2, σ3), where

m1 = σ2 − σ1 + 1, m2 = σ3 − σ2 + 1, σ1 + σ2 + σ3 = 0 (2.5)

or, explicitly

σ1 = 1 − 2m1

3
− m2

3
, σ2 = m1

3
− m2

3
, σ3 = −1 +

m1

3
+

2m2

3
. (2.6)

Convenience of such notation will become clear later.
Provided that the solution of the YBR (2.1) is known, one can construct the family of

commuting operators—transfer matrices [1, 2]:

Tm(u) = tr R10(u) . . .RN0(u). (2.7)

The trace in equation (2.7) is taken over the auxiliary space V0 ≡ Vm and Tm(u) acts on the
tensor product of the sl(3) modules,

V = V1 ⊗ V2 ⊗ · · · ⊗ VN . (2.8)

We shall consider the homogeneous spin chains only, i.e. assume that the quantum spaces
Vk, k = 1, . . . , N , have the same ‘quantum numbers’, Vk = Vn, (n = (n1, n2)). By virtue
of the YBR relation, the transfer matrices Tm(u) commute with each other for the different
values of the spectral parameters and spins of auxiliary space m

[Tm(u), Tm′(v)] = 0. (2.9)

The above equation implies that the transfer matrices share the common set of the
eigenfunctions.

3. Factorization

The R-operator on the tensor product of two generic sl(3) modules, Vn ⊗ Vm ≡ Vρ ⊗ Vσ,

can be obtained as the solution of the RLL relation [30]

R12(u − v)L1(u)L2(v) = L2(v)L1(u)R12(u − v). (3.1)
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Here the operator R12 ≡ Rnm ≡ Rρσ acts on the tensor product Vρ ⊗ Vσ and the Lax
operators L1 and L2—on the tensor products C

3 ⊗ Vρ and C
3 ⊗ Vσ, respectively. The Lax

operator has the following form:

L(u) = u +

L11 L21 L31

L12 L22 L32

L13 L23 L33

 , (3.2)

with the generators Lik defined in equations (2.2), (2.4). It depends on three parameters—the
spectral parameter u and two spins m1,m2. It is convenient to define the following independent
variables:

uk = u − 1 − σk, k = 1, 2, 3. (3.3)

The parameters u1, u2, u3 define unambiguously the parameters u,m1,m2, and, as a
consequence, the Lax operator L(u) = L(u1, u2, u3) = L(u). In [26] it was suggested
to look for the solution of equation (3.1) in the factorized form

R12(u) = P12R1R2R3, (3.4)

where P12 is the permutation operator. The defining equations for the Rk-operators are

RkL1(u)L2(v) = L1(uk)L2(vk)Rk. (3.5)

Here the vectors uk,vk have the interchanged components uk and vk in comparison with u
and v, for example

u1 = (v1, u2, u3), v1 = (u1, v2, v3),

where vk = v −1−ρk . In other words, the action of the operator Rk results in the interchange
of the arguments uk and vk in the Lax operators,

R1L1(u1, u2, u3)L2(v1, v2, v3) = L1(v1, u2, u3)L2(u1, v2, v3)R1,

and so on. It is easy to see that the YB relation (3.1) holds for the R-operator (3.4) provided
that the operators Rk satisfy equations (3.5). Indeed, using repeatedly equation (3.5) for the
operators R3,R2 and R1 one derives

R1R2R3L1(u1, u2, u3)L2(v1, v2, v3) = L1(v1, v2, v3)L2(u1, u2, u3)R1R2R3.

Taking into account that P12L1(v)L2(u)P −1
12 = L2(v)L1(u) one gets the necessary result.

Since the vector spaces V1 and V2 are isomorphic, the operator P12 is well defined on the
tensor product V1 ⊗ V2. The operators Rk which satisfy equation (3.5) were constructed in
[26]. Each operator Rk depends on the subset of the spectral parameters, u and v, only,

R1 = R1(u1|v1, v2, v3), R2 = R2(u1, u2|v2, v3), R3 = R3(u1, u2, u3|v3), (3.6)

and is invariant under a simultaneous shift of all spectral parameters ui → ui +a, vi → vi +a.
We give the explicit expressions for the operators Rk in appendix A. Here we want to discuss
briefly their properties. It follows from relation (3.5) that operators Rk are sl(3) covariant, i.e.

Rk : Vn ⊗ Vm �→ Vnk
⊗ Vmk

, (3.7)

where

n1 = (n1 − λ1, n2), m1 = (m1 + λ1,m2), λ1 = u1 − v1, (3.8a)

n2 = (n1 + λ2, n2 − λ2), m2 = (m1 − λ2,m2 + λ2), λ2 = u2 − v2, (3.8b)

n3 = (n1, n2 + λ3), m3 = (m1,m2 − λ3), λ3 = u3 − v3. (3.8c)
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The action of the R-operator (3.4) on the tensor product Vn ⊗ Vm results in the following
chain of transformations:

R12(u) : Vn1,n2 ⊗ Vm1,m2

R3−→Vn1,n2+λ3 ⊗ Vm1,m2−λ3

R2−→

Vn1+λ2,m2 ⊗ Vm1−λ2,n2

R1−→Vm1,m2 ⊗ Vn1,n2

P12−→Vn1,n2 ⊗ Vm1,m2 , (3.9)

where we have taken into account relations (3.3) and (2.5).
The operators Rk are completely determined by the spins of the spaces Vn ⊗ Vm that

they act on and the spectral parameter λk , namely

R1 = R1(λ1|m1,m2), R2 = R2(λ2|n1,m2), R3 = R3(λ3|n1, n2). (3.10)

One sees that the operator R1 depends on the spins of the second space, Vm, the operator
R3—on the spins of the first space, Vn, and R2—on the spins n1 and m2.

In what follows we shall often display the dependence of the operators Rk on the spectral
parameter only, Rk = Rk(λk), always implying that the others parameters are determined by
the spins of the spaces in the tensor product Vn ⊗ Vm.

Note also that for the spectral parameters uk = vk (λk = 0) the operator Rk turns into the
unit operator, Rk(0) = I. The R-operator can be represented as

R12(u − v) = ρk1k2k3P12Rk1

(
λk1

)
Rk2

(
λk2

)
Rk3

(
λk3

)
, (3.11)

where (k1, k2, k3) is an arbitrary permutation of (1, 2, 3) and λk are defined in (3.8). Indeed,
it follows from equation (3.5) that R matrix (3.11) satisfies the YB relation (3.1) for any
permutation S and, therefore, can differ from (3.4) by a normalization coefficient (ρk1k2k3)

only. To find the latter, it is sufficient to compare the eigenvalues of the R-operator for the
lowest weight vector, � = 1.

Let us denote by R(ij)

k the operator Rk acting on the tensor product Vi ⊗ Vj . One
can easily check that for i �= k the operator R(12)

i (ui − vi)R(23)
k (vk − wk) results in the same

permutation of the arguments in the product of the Lax operators, L1(u)L2(v)L3(w), as
the operator R(23)

k (vk − wk)R(12)
i (ui − vi). Thus one concludes that R(12)

i (λ)R(23)
k (µ) ∼

R(23)
k (µ)R(12)

i (λ). One can verify using explicit expressions for the Rk-operators (see
appendix A) that for i > k the coefficient of proportionality is equal to 1, i.e.

R(12)
i (λ)R(23)

k (µ) = R(23)
k (µ)R(12)

i (λ). (3.12)

3.1. Baxter operators

Let us remind that, by construction, the operator R3(λ) maps Vn ⊗Vm → Vn′ ⊗Vm′ . At the
same time, this operator depends on the spins of the first space, (n1, n2), only, or, which is the
same, it depends on three variables u1 −v3, u2 −v3 and u3 −v3 = λ3. Therefore, the operator
R3(u3 − v3|n1, n2) satisfies relation (3.5) for the arbitrary parameters v1, v2, (the arbitrary
spins m1,m2 of the second space). Having set v1 = u1, v2 = u2, (m̃1 = n1, m̃2 = n2 + λ3)

one finds out that the operator R3(u3 − v3|n1, n2) maps Vn ⊗ Vm̃ to Vm̃ ⊗ Vn. This implies
that the operator L(3)(λ3) = P12R3(u3 − v3|n1, n2) is the sl(3) invariant operator on the space
Vn ⊗ Vm̃,

L(3)(λ3)(u) : Vn1,n2 ⊗ Vn1,n2+λ3

R3−→Vn1,n2+λ3 ⊗ Vn1,n2

P12−→Vn1,n2 ⊗ Vn1,n2+λ3 , (3.13)

that satisfies the relation

L(3)(λ3)L1(u1, u2, u3)L2(u1, u2, v3) = L2(u1, u2, v3)L1(u1, u2, u3)L(3)(λ3). (3.14)
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Thus the operator L(3)(u) has to coincide with the R matrix on the tensor product
Vn1,n2 ⊗ Vn1,n2+u. Indeed, noticing that for u1 = v1 and u2 = v2 the spectral parameters
λ1 = λ2 = 0, one gets from equations (3.11) and (3.3)

L(3)(u) = Rnm̃

(u

3

)
= R(n1,n2),(n1,n2+u)

(u

3

)
. (3.15)

(We switched to the standard notation for the spectral parameter, λ → u.) The similar
considerations hold for the operators R1,R2 as well, resulting in the following identification:

L(1)(u) = R(n1,n2),(n1−u,n2)

(u

3

)
, (3.16)

L(2)(u) = R(n1,n2),(n1+u,n2−u)

(u

3

)
, (3.17)

where L(k)(u) = P12Rk(u). Since all spaces Vm and Vm′ are isomorphic to each other (as
vector spaces) one concludes that the trace of the product of the operators Lk is the sl(3)

invariant operator on V1 ⊗ · · · ⊗ VN . For example, it follows from equation (3.15) that

trVm
L(1)

10 (u) · · ·L(1)
N0(u) = T(n1−u,n2)

(u

3

)
, (3.18)

where Vm is arbitrary and Vi = Vn, i = 1, . . . , N .
Next we define three sl(3) invariant operators, Qk(u), acting on V1 ⊗ V2 ⊗ · · · VN by

Q1(u + ρ1) = P−1 trVm
L(1)

10 (u) · · ·L(1)
N0(u) = P−1T(n1−u,n2)

(u

3

)
, (3.19a)

Q2(u + ρ2) = P−1 trVm
L(2)

10 (u) · · ·L(2)
N0(u) = P−1T(n1+u,n2−u)

(u

3

)
, (3.19b)

Q3(u + ρ3) = trVm
L(3)

10 (u) · · ·L(3)
N0(u) = T(n1,n2+u)

(u

3

)
. (3.19c)

Here the parameters ρk specify the quantum space Vn,

n1 = ρ2 − ρ1 + 1, n2 = ρ3 − ρ2 + 1, ρ1 + ρ2 + ρ3 = 0. (3.20)

The operator P is the operator of cyclic permutations

P�(x1, . . . ,xN) = �(xN,x1, . . . ,xN−1). (3.21)

The specific form of the arguments of the Baxter operators Qk on the lhs of equations (3.19)
and the presence of the operator P in the definitions of the operators Q1 and Q2 are matter of
convenience.

Having put u = 0 in equations (3.19) one finds

Q1(ρ1) = Q2(ρ2) = I, Q3(ρ3) = P.

In the ρ notations the expressions for the Q-operators take a more symmetric form,

Q1(u + ρ1) = P−1Tρ1+2α,ρ2−α,ρ3−α(α)
∣∣
α=u/3, (3.22a)

Q2(u + ρ2) = P−1Tρ1−α,ρ2+2α,ρ3−α(α)
∣∣
α=u/3, (3.22b)

Q3(u + ρ3) = Tρ1−α,ρ2−α,ρ3+2α(α)
∣∣
α=u/3. (3.22c)

It follows from the commutativity of the transfer matrices (2.9) that the operators Qk(u)

commute with each other

[Qk(u),Qj (v)] = 0. (3.23)
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Ri0
k (λk)

ji j0
ji j0

=

j0 j0

ji ji

Rk

Figure 1. The graphical representation of the matrix of the Rk-operator.

RiRi

RkRk

i1i1

i2i2

i3i3

i1
i1

i2 i2

i3i3

=

Figure 2. The graphical representation of the permutation identity (3.12).

i1

i2

iN

i1

i2

iN

R12

R12

R12

R3

R3

R3

Figure 3. The graphical representation for the transfer matrix (2.7). The boxes with the label R12
denote the matrix the operator R12 ≡ R1R2.

Moreover, we shall prove that the transfer matrix is factorized into the product of these
operators:

T(m1,m2)(u) ≡ T(σ1,σ2,σ3)(u) = Q1(u + σ1)Q2(u + σ2)Q3(u + σ3). (3.24)

The proof is based on the disentangling of trace (2.7) with the help of the commutation
relations (3.12). Let us choose some basis in the space V = C[x, y, z]. Then an arbitrary
operator A : V ⊗ V �→ V ⊗ V is represented by the matrix A

i j

i ′j ′ in the corresponding

basis, ψ = ∑
ij ψij (ei ⊗ ej ), (Aψ)ij = ∑

i ′j ′ A
ij

i ′j ′ψi ′j ′
. To simplify the combinatoric, it is

convenient to represent the matrix A
i j

i ′j ′ by the box with four attached lines corresponding to the
indices (i, j), (i ′, j ′), see figure 1. The line connecting two boxes will imply the summation
over the corresponding index. For example, the product (AB)

i j

i ′′j ′′ = ∑
i ′j ′ A

i j

i ′j ′B
i ′ j ′
i ′′j ′′ is

represented by two boxes which are connected by two lines. The commutation relation (3.12)
is represented by the diagram shown in figure 2 .

The action of the permutation operator is equivalent to the interchanging of the matrix
indices, [P12A]i1i2

i ′1i
′
2

= A
i2i1

i ′1i
′
2
. Taking this into account one can easily derive the graphical

representation for the transfer matrix (2.7), which is shown in figure 3. The boxes with the
label R12 in figure 3 denote the kernel of the operator R12 = R1(u−ρ1 + σ1)R2(u−ρ2 + σ2),
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i1

i2

iN

i1

iN−1

iN

R12

R12

R12

R3

R3

R3

Figure 4. The graphical representation of transfer matrix after transformation.

and the boxes with index R3 correspond to the kernel of the operator R3(u − ρ3 + σ3). It
follows from equation (3.12) that the operators R12 and R3 satisfy the similar equation

R(ik)
12 R(kj)

3 = R(kj)

3 R(ik)
12 . (3.25)

The graphical representation of the above identity is given by the diagram in figure 2, where
the box Rk has to be understood as the matrix for the operator R12. Then using this relation
one can bring the diagram in figure 3 into the form shown in figure 4.

One can easily check that this diagram is nothing else as the graphical representation of
the following operator:(

tr0 P10R(10)
12 · · · PN0R(N0)

12

)
P−1

(
tr0 L(3)

10 (u3) · · ·L(3)
N0(u3)

)
, (3.26)

where R(k0)
12 = R(k0)

1 (u−ρ1 +σ1)R(k0)
2 (u−ρ1 +σ1) and u3 = u−ρ3 +σ3. Taking into account

equation (3.19) one concludes that last trace corresponds to the operator Q3(u + σ3). We get

Tm(u) = tr0
{
P10

(
R(10)

1 R(10)
2 R(10)

3

) · · ·PN0
(
R(N0)

1 R(N0)
2 R(N0)

3

)}
= tr0

{
P10

(
R(10)

1 R(10)
2

) · · ·PN0
(
R(N0)

1 R(N0)
2

)}
P−1Q3(u + σ3). (3.27)

The trace in the second line of equation (3.27) differs from the trace in the first line by the
absence of the operator R3 only. Hence one can repeat the same steps and show that

tr0
{
P10

(
R(10)

1 R(10)
2

) · · · PN0
(
R(N0)

1 R(N0)
2

)} = (
tr0 L(1)

10 (u1) · · ·L(1)
N0(u1)

)
P−1

×(
tr0 L(2)

10 (u2) · · ·L(2)
N0(u2)

) = PQ1(u + σ1)Q2(u + σ2). (3.28)

Thus, one obtains for Tm(u)

Tm(u) = PQ1(u + σ1)Q2(u + σ2)P−1Q3(u + σ3) = Q1(u + σ1)Q2(u + σ2)Q3(u + σ3),

where we took into account that [P,Qk(u)] = 0.
Let us note that the construction of the Baxter operators Qk(u) and the proof of the

factorization of the transfer matrix presented here rely on the properties of the operators Rk

only. Therefore, the same constructions will hold for the generic sl(N) spin chain provided
that there exist operators Rk satisfying the equations analogous to equations (3.5).
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4. Transfer matrices for the reducible modules

So far we have considered the R-operators which act on the tensor product of two generic
sl(3) modules, Vn ⊗ Vm, Vn(m) ∼ V = C[x, y, z]. We have shown that the transfer matrix
Tm(u) (see equation (2.7)) is factorized into the product of three Q-operators, provided that
the auxiliary space Vm is a generic one. In this section we study the properties of the transfer
matrices in the case that the auxiliary space is nongeneric. Namely, our final aim is to find the
expression for the transfer matrix with the finite-dimensional auxiliary space in terms of the
generic transfer matrix Tm(u).

The subsequent analysis is based on the generalization of the method used in [25] for the
analysis of the sl(2) invariant spin chains. We briefly remind the main idea and then go over
to the more detailed discussion. First of all we note that for the proof of factorization it is
completely irrelevant whether the module Vm is irreducible or not. Second, let us consider the
situation when the (auxiliary) module Vm is reducible, i.e. it contains an invariant subspace,
Ṽ ⊂ Vm. Then the subspace Vn ⊗ Ṽ ⊂ Vn ⊗ Vm is the invariant subspace of the operator
Rnm(u). As a consequence, the latter has the block diagonal form

Rnm(u) =
(
R̃(u) 


0 R(u)

)
. (4.1)

The new operator R̃(u) acts on the space Vn ⊗ Ṽ and R(u)—on the space Vn ⊗ V, where
V = Vm/Ṽ is the factor space. The operators R̃(u),R(u) satisfy the YB relation and
can be identified with the R-operators on the corresponding spaces. Clearly, the trace in
equation (2.7) decays into the sum of two traces,

Tm(u) = T̃(u) + T(u), (4.2)

where

T̃(u) = tr(R̃10(u) · · · R̃N0(u)), T(u) = tr(R10(u) · · ·RN0(u)). (4.3)

If the factor module is isomorphic to a certain generic module, V = Vm′ , one concludes
that the transfer matrix T(u) = ϕ(u)Tm′(u), where ϕ(u) is some normalization factor. Thus,
equation (4.2) allows us to express the new transfer matrix T̃(u) in terms of the two generic
transfer matrix Tm and Tm′ . In what follows we shall show that the all transfer matrices with
nongeneric auxiliary space can be expressed as the certain combinations of the generic transfer
matrices Tm(u). Below we consider the reducible sl(3) modules in more detail.

4.1. The structure of the reducible modules

The generic sl(3) module Vm1,m2 is irreducible unless one of the numbers 1 −m1, 1 −m2, 2 −
m1 − m2 is a positive integer. This can be checked in the following way. Let us consider the
space W = C[x, y, z] and the bilinear form (·, ·) on W×V,

(
V ≡ Vm1,m2

)
defined as follows:(

ẽk1,k2,k3 , en1,n2,n3

) = δn1,k1δn2,k2δn3,k3n1!n2!n3!, (4.4)

where e(ẽ)n1,n2,n3 = xn1yn2zn3 are the basis vectors in the spaces V(W). The representation
of the sl(3) algebra on V induces the representation on W, (w,Lαv) = (L̃αw, v). Now
if the subspace Ṽ is an invariant subspace, Ṽ ⊂ V, then the subspace W⊥, orthogonal to
Ṽ, (W⊥, Ṽ) = 0, is the invariant subspace of W. Next, it is easy to see that there exists only
one lowest weight vector in the space V, � = 1. Since an invariant subspace has to have a
lowest weight vector, � ∈ Ṽ as well. Therefore one concludes that the invariant subspace
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W⊥ has a lowest weight vector � �= 1. So, if the space V has an invariant subspace there has
to exist a nontrivial, � �= 1, lowest weight vector,

L̃ik� = 0, i < k, (4.5)

in the dual space W. One can easily find that equations (4.5) have a solution only if at least
one of the numbers 1 − m1, 1 − m2, 2 − m1 − m2 is a positive integer. If only one of these
numbers is a positive integer, then there exists only one nontrivial solution (lowest weight),
and as a consequence, only one invariant subspace Ṽ (see appendix B for details).

To get a more detail description of the invariant subspaces we define two operators

D1 = ∂x + z∂y, D2 = ∂z. (4.6)

These operators possess remarkable properties. Namely, if 1 − m1 is a positive integer
the operator D1−m1

1 intertwines generators Lα(m1,m2) and Lα(2 − m1,m1 + m2 − 1), and
if 1 − m2 is a positive integer the operator D1−m2

2 intertwines generators Lα(m1,m2) and
Lα(m1 + m2 − 1, 2 − m2):

D1−m1
1 Lα(m1,m2) = Lα(2 − m1,m1 + m2 − 1)D1−m1

1 , (4.7a)

D1−m2
2 Lα(m1,m2) = Lα(m2 + m1 − 1, 2 − m2)D1−m2

2 . (4.7b)

To check this, note that the operators D1 and D2 commute with all lowering generators,
Lik, i > k. It can be shown that

D1L12(m1) = L12(m1 + 2)D1 + m1, D1L23(m2) = L23(m2 − 1)D1, (4.8)

D2L12(m1) = L12(m1 − 1)D2, D2L23(m2) = L23(m2 + 2)D2 + m2. (4.9)

Here we display only those spins as arguments of the generators that they really depend on.
From these relations it follows for example that

Dp

1 L12(m1) = L12(m1 + 2p)Dp

1 + p(m1 + p − 1)Dp−1
1

and therefore, for p = 1 − m1, the inhomogeneous term disappears. Thus equations (4.7)
hold for the generators L12, L23 and the lowering generators. Since all other generators can
be obtained as the commutators of the latter ones we conclude that equations (4.7) are valid
for all generators. It is useful to rewrite equations (4.7) in σ notations. Taking into account
definitions (2.5) one gets

W12Lα(σ1, σ2, σ3) = Lα(σ2, σ1, σ3)W12, W12 = Dσ12
1 , (4.10a)

W23Lα(σ1, σ2, σ3) = Lα(σ1, σ3, σ2)W23, W23 = Dσ23
2 , (4.10b)

where σik = σi − σk . Thus the action of these operators results in the permutation of the
‘spins’ σ = (σ1, σ2, σ3). These relations are valid even for a noninteger σ12(σ23). However,
the operators Dσ12

1 ,Dσ23
2 are well-defined operators on V only for integer σ12, σ23. Thus, if

σ23 = 1, 2, . . . (m2 = 0,−1,−2, . . .) the kernel of the operator W23 = Dσ23
2

V
(23)
σ1σ2σ3

= kerW23 (4.11)

is an invariant subspace in Vσ1σ2σ3 . The factor space, Vσ1σ2σ3

/
V

(23)
σ1σ2σ3

= ImW23, is the sl(3)

module having the ‘quantum numbers’ σ1, σ3, σ2. For σ12 = 1 − m1 being noninteger this
module is irreducible and, therefore, coincides with the generic sl(3) module, Vσ1σ3σ2 , i.e.

Vσ1σ2σ3

Dσ23
2−→Vσ1σ3σ2 = Vσ1σ2σ3

/
V

(23)
σ1σ2σ3

. (4.12)

Since the operator Dσ23
2 does not depend on m1, this conclusion remains valid for an arbitrary

m1. Thus, for −m2 = 0, 1, 2, . . . , the generic module Vσ1σ2σ3 contains the invariant subspace
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(4.11), and the factor space V/V
(23) is the generic module Vσ1σ3σ2 . For noninteger σ12 = 1−m1

these modules are irreducible ones.
Similarly, if σ12 = 1 − m1 = 1, 2, . . . , the generic module Vσ1σ3σ2 contains the invariant

subspace, V
(12)
σ1σ2σ3

= kerW12, and the factor space V/V
(12) = ImW12 is equivalent to the

generic module Vσ2σ1σ3 ,

Vσ1σ2σ3

Dσ12
1−→Vσ2σ1σ3 = Vσ1σ2σ3

/
V

(12)
σ1σ2σ3

. (4.13)

Again, these modules are irreducible ones provided that σ23 is noninteger.
Now let us consider the situation when σ13 = 2 − m1 − m2 is a positive integer, while

σ12 = 1 − m1 and σ23 = 1 − m2 are not. In this case there exists an operator W which
intertwines the generators Lα(σ1σ2σ3) and Lα(σ3σ2σ1). It has the form

W13 = Dσ12
2 Dσ13

1 Dσ23
2 = Dσ23

1 Dσ13
2 Dσ12

1 . (4.14)

Indeed, using relations (4.10) it is easy to check that the operator W13 (in both forms)
intertwines the corresponding operators. Next, taking into account that the commutator
[D1,D2] commutes with both D1 and D2, it is straightforward to show that W13 is a polynomial
in D1 and D2, and that both representations are equivalent. One concludes that the kernel
of the operator W13 is an invariant subspace, V

(13)
σ = kerW13, and the corresponding factor

module is equivalent to the generic module Vσ3,σ2,σ1 ,

Vσ1σ2σ3

W13−→Vσ3σ2σ1 = Vσ1σ2σ3

/
V

(13)
σ1σ2σ3

. (4.15)

If one of the numbers σ12, σ23, σ13 is positive integer we define the transfer matrices
T

(ij)
σ , i < j by

T
(ij)
σ (u) = tr

V
(ij)
σ

{R̃10(u) · · · R̃N0(u)}, (4.16)

where R̃k0(u) is the restriction of the operator Rk0(u) on the subspace Vk ⊗ V
(ij)
σ . As it

was explained in the beginning of the section, the second diagonal block of the R-operator,
equation (4.1), is proportional to the R-operator on the tensor product Vρ ⊗(

Vσ

/
V

(ij)
σ

)
. Since

Vσ

/
V

(ij)
σ = Vσij

, where σij = Pijσ (the operator Pij interchanges the ith and j th components
of the vector (σ1, σ2, σ3)), one concludes that

WijR(u) = rij (u)Rρσij
(u)Wij . (4.17)

To fix the factor rij (u) it is sufficient to apply the lhs and rhs to some vector. With the help of
the formulae given in appendix A, it can be checked that for the chosen normalization of the
R-operator all coefficients rij (u) are equal to 1. Then taking into account (4.2) one obtains

T
(ij)
σ (u) = Tσ(u) − Tσij

(u) = (1 − Pij )Tσ(u). (4.18)

In the case that both spins m1,m2 are negative, m1,m2 = 0,−1,−2 . . . , or, equivalently,
the differences σ12, σ23 are positive integers, the subspaces V

(ij)
σ are not irreducible any longer.

Thus one can again single out an invariant subspace and write for the transfer matrix T
(ij)
σ (u)

the representation similar to equation (4.2). For definiteness we consider the space V
(23)
σ . As

follows from equations (4.6) and (4.10), this is the vector space spanned by the basis vectors
xnzkyp, such that k � −m2 = σ23 − 1. Using the arguments given at the beginning of the
subsection (see the discussion around equation (4.5)) one can show that this space contains
only one invariant subspace (see appendix B for details). This invariant subspace, vσ, is given
by the kernel of the operator W12 restricted on V

(23)
σ , or by the intersections of the kernels of

the operators W12 and W23,

vσ = kerW12|V(23)
σ

= kerW12 ∩ kerW23 = kerW23|V(12)
σ

. (4.19)
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Obviously, the module vσ is the finite-dimensional sl(3) module. As was discussed in the
beginning of the section, the R matrix takes the block diagonal form (4.1), where R̃(u) is
now the restriction of the Rρσ(u) operator on the invariant subspace Vρ ⊗ vσ, and R(u) is the
restriction of the operator Rρσ(u) on the subspace Vρ ⊗ (

V
(23)
σ

/
vσ

)
,

V
(23)
σ

/
vσ ∼ ImW12|V(23)

σ
≡ Vσ2σ1σ3 . (4.20)

As a consequence, one obtains the following relation for the transfer matrices:

T
(23)
σ1σ2σ3

(u) = tσ1σ2σ3(u) + Tσ2σ1σ3(u). (4.21)

The new transfer matrices entering equation (4.21) are defined as follows:

tσ(u) = trvσ
{R̃10(u) · · · R̃N0(u)}, (4.22)

Tσ12(u) = trVσ12
{R10(u) · · ·RN0(u)}. (4.23)

At the last step we express the transfer matrix Tσ in terms of T
(23)
σ . To this end we note

that the module Vσ2σ1σ3 = ImW12|V(23)
σ

is contained in the module V
(23)
σ2σ1σ3

,Vσ2σ1σ3 ⊂ V
(23)
σ2σ1σ3

.
To verify this one should show that Dσ13

2 ϕ = 0 if ϕ ∈ Vσ2σ1σ3 . Indeed, taking into account that
ϕ = Dσ12

1 f , where f ∈ V
(23)
σ1σ2σ3

,
(
D

σ23
2 f = 0

)
and that [D2[D1,D2]] = 0 one gets

Dσ13
2 ϕ = Dσ13

2 Dσ12
1 f = W̃Dσ23

2 f = 0. (4.24)

Next, this subspace, Vσ2σ1σ3 coincides with the kernel of the intertwining operator4

W̃13 = Dσ21
2 Dσ23

1 Dσ13
2 = Dσ13

1 Dσ23
2 Dσ21

1 , W̃13Lα(σ2, σ1, σ3) = Lα(σ3, σ1, σ2)W̃13, (4.25)

i.e. Vσ2σ1σ3 = ker W̃13. Indeed, it can be shown (see appendix B) that the space V
(23)
σ2σ1σ3

has
only one invariant subspace. Since both Vσ2σ1σ3 and ker W̃13 are the invariant subspaces of
V

(23)
σ2σ1σ3

they have to coincide. The factor module

V
(23)
σ2σ1σ3

/
Vσ2σ1σ3 = V

(23)
σ2σ1σ3

/
ker W̃13 = Im W̃13 = V

(23)
σ3σ1σ2

(4.26)

is an irreducible one because neither σ31 nor σ32 are positive integers. These results are
equivalent to the statement that the following sequence

0 −→ vσ1σ2σ3

d1−→ V
(23)
σ1σ2σ3

d2−→ V
(23)
σ2σ1σ3

d3−→ V
(23)
σ3σ1σ2

−→ 0, (4.27)

where d1 = i, is the natural inclusion of vσ to V
(23)
σ , d2 = W12 and d3 = W̃13, is an exact one.

The map d2 in this sequence results in relation (4.21) for the transfer matrices, while the map
d3 generates the new relation

T
(23)
σ2σ1σ3

(u) = Tσ2σ1σ3(u) + T
(23)
σ3σ1σ2

(u). (4.28)

This equation together with equation (4.21) gives

tσ1σ2σ3(u) = T
(23)
σ1σ2σ3

(u) − T
(23)
σ2σ1σ3

(u) + T
(23)
σ3σ1σ2

(u) = (1 − P12 + P12P23)T
(23)
σ1σ2σ3

(u). (4.29)

Finally, taking into account equation (4.18) we obtain the following representation for the
auxiliary transfer matrix:

tσ1σ2σ3(u) =
∑
P

(−1)sign(P )Tσi1 σi2 σi3
(u), (4.30)

where sum is taken over all permutations. We remind that σ1 > σ2 > σ3 and the differences
σ12 = σ1 − σ2, σ23 = σ2 − σ3 are positive integers.

4 Let us note that though σ21 < 0 the operator W̃13 is a polynomial in D1,D2.
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5. Baxter equations

In this section we shall show that the operators Qi(u) which factorize the transfer matrices,
Tσ(u), satisfy the infinite set of finite difference relations involving the auxiliary (finite-
dimensional) transfer matrices tσ(u).

First of all let us note that using the factorized form of the transfer matrix, equation (3.24),
one can rewrite equation (4.30) in the equivalent form

tσ1σ2σ3(u) = det‖Qi(u + σj )‖j,i=1,2,3. (5.1)

All linear equations on the operators Qk can be obtained in the following way. Let us consider
the determinant of the matrix which has two identical columns,

det

∣∣∣∣∣∣∣∣
Q1(u + σ1) Q2(u + σ1) Q3(u + σ1) Q3(u + σ1)

Q1(u + σ2) Q2(u + σ2) Q3(u + σ2) Q3(u + σ2)

Q1(u + σ3) Q2(u + σ3) Q3(u + σ3) Q3(u + σ3)

Q1(u + σ4) Q2(u + σ4) Q3(u + σ4) Q3(u + σ4)

∣∣∣∣∣∣∣∣ = 0. (5.2)

We assume that the parameter σ4 is such that the difference σ34 = σ3 − σ4 ≡ 1 − m3 is a
positive integer. Expanding determinant (5.2) over the last column one derives

4∑
k=1

(−1)kQ3(u + σk) det Mk(u) = 0, (5.3)

where Mk(u) are the corresponding minors. The minors are the 3 × 3 matrices of the same
type as in (5.1) and can be identified with the transfer matrices as follows:

Mk(u) = tσk(α)(u + α)|α=(σ4−σk)/3, (5.4)

where σk(α) = (σ1 − α, . . . , σ̂k, . . . , σ4 − α), i.e. all parameters σi, i = 1, . . . , 4, are shifted
by α, and the kth element in the string (σ1, σ2, σ3, σ4) is omitted. The shift of the arguments
arises from the requirement that

∑3
i=1 σ k

i (α) = 0. At this point it is convenient to return
to the standard notations for the transfer matrix, tσ(u) = tm,mk = σk+1 − σk + 1. Then
equation (5.3) takes the form

tm2,m3

(
u +

m1 + m2 + m3 − 3

3

)
Q3(u + σ1) − tm1+m2−1,m3

(
u +

m2 + m3 − 2

3

)
Q3(u + σ2)

+ tm1,m2+m3−1

(
u +

m3 − 1

3

)
Q3(u + σ3) − tm1,m2(u)Q3(u + σ4) = 0, (5.5)

where the parameters σk are given by

σ1 = 1 − 2m1 + m2

3
, σ2 = m1 − m2

3
,

σ3 = −1 +
m1 + 2m2

3
, σ4 = −2 +

m1 + 2m2 + 3m3

3
.

(5.6)

The parameters mi take the following values: mi = 0,−1,−2, . . . . Obviously, the other two
operators Q2(u) and Q3(u) satisfy the same equation. Having put all mi = 0, one gets the
simplest equation on the operator Qk(u),

t(0,0)(u − 1)Qk(u + 1) + t(0,−1)

(
u − 1

3

)
Qk(u − 1)

= t(−1,0)

(
u − 2

3

)
Qk(u) + t(0,0)(u)Qk(u − 2). (5.7)

The auxiliary transfer matrices t0,−1 and t−1,0 can be represented as the traces of the Lax
operators:

L(u) = L(0,−1)(u) = u +
∑
ab

EbaLab, L(u) = L(−1,0)(u) = u +
∑
ab

EbaLab, (5.8)
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where Eab are the generators in the fundamental representation of sl(3), (m = (0,−1)),
and Eba are the generators in the representation m = (−1, 0). Let us denote by R̃nm the
restriction of the R-operators to the invariant subspaces for m = (0,−1), or m = (−1, 0).
Using the formulae from appendix A one finds by the comparison of the eigenvalues that

R̃ρ,(0,−1)(u − 1/3) = −X(u)L(u), R̃ρ,(−1,0)(u − 2/3) = X(u)L̄−1(−u + 1), (5.9)

where

X(u) = cos π(u − ρ2)
�(u + 1 − ρ1)�(u − 1 − ρ1)�(u − 1 − ρ2)

�(ρ2 − u)�(ρ3 − u)�(ρ3 − u + 2)
. (5.10)

Similarly, one derives

R̃ρ,(0,0)(u) = X(u)

3∏
k=0

(ρk + 1 − u). (5.11)

Equation (5.7) can be rewritten in the form

τ2(u)Qk(u) + �(u)�(u − 1)Qk(u − 2) = �(u)τ1(u)Qk(u − 1) + Qk(u + 1), (5.12)

where �(u) = ∏3
k=1(u − ρk)

N and the transfer matrices τ1(u) and τ2(u) are the polynomials
in u of degree N and 2N

τ1(u) = tr{L1(u) · · · LN(u)} = 3uN +
N∑

k=2

q
(1)
k uN−k, (5.13)

τ2(u) =
3∏

k=1

(ρk − u)N tr
{
L̄−1

1 (−u + 1) · · · L̄−1
N (−u + 1)

}
= 3u2N + 3Nu2N−1 +

2N∑
k=2

q
(2)
k u2N−k. (5.14)

The charges q
(i)
k are some functions of the spin generators. The lowest charges can be expressed

in terms of the Casimir operators as follows:

q
(1)
2 = C

N
2 − NC2, (5.15a)

q
(2)
2 = C

N
2 − 2NC2 + 3

2N(N − 1), (5.15b)

q
(2)
3 = q

(1)
3 − [

C
N
3 − NC3

]
+ N

(
C

N
2 − NC2

) − N(N − 1)C2 + 1
2N(N − 1)(N − 2).

(5.15c)

Here the operators C2(C3) and C
N
2

(
C

N
3

)
are the ‘one particle’ and the total quadratic (cubic)

Casimir operators,

C2 = 1
2LabLba, C

N
2 = 1

2 LabLba, C3 = 1
3LabLbcLca, CN

3 = 1
3 LabLbcLca, (5.16)

where Lab = (L1 + · · · + LN)ab.
Further, let us define a new operator Q(u) as

Q3(u) = �N(u − ρ2 + 1)�N(u − ρ1 + 1)Q(u). (5.17)

It can be shown that the eigenvalues of the operator Q(u) are polynomials in u. Inserting
ansatz (5.17) into equation (5.12) one derives

τ2(u)Q(u) + (u − ρ3)
N(u − ρ3 − 1)NQ(u − 2)

= (u − ρ3)
Nτ1(u)Q(u − 1) + (u − ρ1 + 1)N(u − ρ2 + 1)NQ(u + 1). (5.18)
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The degree of the polynomial Q(u) is determined by the eigenvalues of the Cartan generators
H1 and H2. Namely, Q(u) ∼ uM + · · ·, where M = 1

3 (2H2 + H1 − N(2n2 + n1)). Clearly, this

equation is insufficient to fix the eigenvalues of all integrals of motion, q
(i)
k .

To get another equation and establish the connection with nested Bethe ansatz let us
consider the operator Q2(u). Again, separating the ‘kinematical’ factor

Q2(u) =
(

cos(π(u − ρ2))
�(u − ρ1 + 1)

�(1 − u + ρ3)

)N

Q̂(u) (5.19)

and taking into account the explicit expression for the operator R2, equation (A.2), one
finds that the eigenvalues Q̂(u) are the meromorphic functions of u with poles at the points
uk = ρ3 + k, k = 1, 2 . . . . The operator Q̂(u) satisfies a finite difference equation similar
equation (5.18). Solving this equation (together with equation (5.18)) in the class of mero-
morphic functions described above one can, in principle, fix the eigenvalues of all integral of
motions.

However, it is more instructive to consider the following operator:

Q23(u) = Q3(u)Q2(u − 1) − Q3(u − 1)Q2(u). (5.20)

Using equation (5.12) one obtains that the operator Q23(u) satisfies the following equation:

τ2(u − 1)Q23(u − 1) + �−1(u)�−1(u − 1)Q23(u + 1)

= �−1(u − 1)τ1(u)Q23(u) + �(u − 1)�(u − 2)Q23(u − 2). (5.21)

Substituting equations (5.17) and (5.19) into (5.20) one gets

Q23(u) =
(

cos(π(u − ρ2))
�(u − ρ1 + 1)�(u − ρ)�(u − ρ2)

�(1 − u + ρ3)

)N

Q̃(u), (5.22)

where

Q̃(u) = Q(u)Q̂(u − 1)

(
u − ρ1

u − ρ3 − 1

)N

− Q(u − 1)Q̂(u). (5.23)

Inserting ansatz (5.22) into equation (5.21) one gets the following equation on Q̃(u):

τ2(u − 1)Q̃(u − 1) + (u − ρ1)
N(u − ρ1 + 1)NQ̃(u + 1)

= (u − ρ1)
Nτ1(u)Q̃(u) + (u − ρ2 − 1)N(u − ρ3 − 1)NQ̃(u − 2). (5.24)

Let us show that the function Q̃(u) is a polynomial in u. Indeed, as we have shown the
function Q̂(u), and as a consequence, Q̃(u) is a meromorphic function with poles at the
points u+

k = ρ3 + k, k = 1, 2, . . . . Thus, the function Q̃(u) is an analytic function for
Re(u) < Re(ρ3 + 1). Further, it follows from equation (5.24) that Q̃(u) is a meromorphic
function with poles at the points u−

k = ρ1 + k, k = 1, 2, . . . . For ρ3 �= ρ1 we arrive to the
conclusion that the function Q̃(u) has no poles at all and, therefore, is a polynomial. It can
be found from equation (5.24) that the degree of the polynomial Q̃(u), (Q̃(u) ∼ uM̃ + · · ·) is
equal to M̃ = 1

3 (2H1 + H2 − N(2n1 + n2)).
In the case of the sl(3) spin magnet the nested Bethe ansatz equations [4, 5] can be

rewritten in the form of the finite difference equation for two polynomials [23]. It is easy to
check that equations (5.18), (5.24) coincide with the equations obtained in [23]. Let us note
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that the determinant representation for the auxiliary transfer matrices τ1,2(u) for the compact
sl(3) magnet with the quantum space (⊗C

3)N was derived in [24].

6. Summary

We have considered the problem of constructing the Baxter operators for the sl(3) invariant
spin magnet. It has been shown that the transfer matrices for the spin chain with a generic
quantum space are factorized into the product of three Baxter operators. These operators can
be identified with the generic transfer matrix with the special auxiliary space. We have shown
that the transfer matrices with nongeneric auxiliary space can be represented as the linear
combinations of the generic transfer matrices. The form of such a representation is uniquely
fixed by the decomposition of the reducible sl(3) modules. It has been shown that the Baxter
operators satisfy the infinite set of the self-consistency relations (finite-difference equations)
involving the transfer matrices with a finite-dimensional auxiliary space; these equations can
be cast into the form equivalent to the nested Bethe ansatz. Since the approach presented
here does not depend on the existence of the lowest weight vector in the quantum space of
the model, it can be applied to the analysis of the spin magnets of another type, e.g., the spin
magnets with Hilbert space being the principal series representation of the sl(n, C) group.
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Appendix A. R-operators

Here we give the explicit expressions for the operators Rk , equation (3.6),

R1 = S
−1
1

�(x∂x + u1 − v2 + 1)

�(x∂x + 1)
e

y

x
∂z

�(y∂y + u1 − v3 + 1)

�(y∂y + v1 − v3 + 1)
e− y

x
∂z

�(x∂x + 1)

�(x∂x + v1 − v2 + 1)
S1,

(A.1)

R2 = f (u2 − v2)S
−1
2

�
(
z2∂z2 + u2 − v3 + 1

)
�

(
z2∂z2 + 1

) e− y1
z2

∂x1

× �
(
x1∂x1 + u1 − v2 + 1

)
�

(
x1∂x1 + u1 − u2 + 1

) e
y1
z2

∂x1
�

(
z2∂z2 + 1

)
�

(
z2∂z2 + v2 − v3 + 1

)S2, (A.2)

R3 = S
−1
3

�
(
z1∂z1 + u2 − v3 + 1

)
�

(
z1∂z1 + 1

) e− y1
z1

∂x1
�

(
y1∂y1 + u1 − v3 + 1

)
�

(
y1∂y1 + u1 − u3 + 1

)
× e

y1
z1

∂x1
�

(
z1∂z1 + 1

)
�

(
z1∂z1 + u2 − u3 + 1

)S3. (A.3)

Here f (λ) = cos πλ, � is the Euler gamma function,

x = x2, z = z2, y = y2 − z2x2, ∂x = ∂x2 + z2∂y2 , ∂z = ∂z2 + x2∂y2 , ∂y = ∂y2

and

S1 = exp
{
(y1 + z1x2)∂y2

}
exp

{
z1∂z2

}
exp

{
x1∂x2

}
, (A.4)
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S2 = exp
{
(y2 + z1x1)∂y1

}
exp

{
z1∂z2

}
exp

{
x2∂x1

}
, (A.5)

S3 = exp
{
(y2 + z2x1)∂y1

}
exp

{
z2∂z1

}
exp

{
x2∂x1

}
. (A.6)

We remind also that uk = u − 1 − ρk and vk = v − 1 − σk . The detailed discussion of the
properties of these operators can be found in [26]. Since the operators Rk are sl(3) covariant
operators they map lowest weight vectors to the lowest weight vectors. The latter have the
form

�nmp = (x1 − x2)
n(z1 − z2)

m(y1 − y2 − z2(x1 − x2))
p. (A.7)

The Cartan generators have the following values on these vectors:

H1�nmp = (2n + p − m + n1 + m1)�nmp, H2�nmp = (2m + p − n + n2 + m2)�nmp.

(A.8)

The vectors �n00 and �0m0 have unique quantum numbers and therefore are the eigenvectors
of all operators Rk . Denoting the eigenvalues of the operators Rk on the vectors �n00 and
�0m0 by r

(1,n)
k and r

(2,m)
k one gets for the latter

r
(1,n)
1 (u1|v1, v2, v3) = �(n + u1 − v2 + 1)

�(n + v1 − v2 + 1)

�(u1 − v3 + 1)

�(v1 − v3 + 1)
, r

(2,m)
1 = r

(1,0)
1 , (A.9)

r
(2,m)
3 (u1, u2, u3|v3) = �(m + u2 − v3 + 1)

�(m + u2 − u3 + 1)

�(u1 − v3 + 1)

�(u1 − u3 + 1)
, r

(1,n)
3 = r

(2,0)
3 , (A.10)

r
(1,n)
2 (u1, u2|v2, v3) = f (u2 − v2)

�(n + u1 − v2 + 1)

�(n + u1 − u2 + 1)

�(u2 − v3 + 1)

�(v2 − v3 + 1)
, (A.11)

r
(2,m)
2 (u1, u2|v2, v3) = f (u2 − v2)

�(u1 − v2 + 1)

�(u1 − u2 + 1)

�(m + u2 − v3 + 1)

�(m + v2 − v3 + 1)
. (A.12)

For the eigenvalues of the R-operator corresponding to these eigenvectors one obtains

R1,n
ρσ (λ) = (−1)nf (λ + σ2 − ρ2)

�(n + σ2 − ρ1 + 1 + λ)

�(n + ρ2 − σ1 + 1 − λ)

× �(σ3 − ρ2 + 1 + λ)

�(ρ3 − σ2 + 1 − λ)

�(σ3 − ρ1 + 1 + λ)

�(ρ3 − σ1 + 1 − λ)
, (A.13)

R2,m
ρσ (λ) = (−1)mf (λ + σ2 − ρ2)

�(m + σ3 − ρ2 + 1 + λ)

�(m + ρ3 − σ2 + 1 − λ)

× �(σ3 − ρ1 + 1 + λ)

�(ρ3 − σ1 + 1 − λ)

�(σ2 − ρ1 + 1 + λ)

�(ρ2 − σ1 + 1 − λ)
. (A.14)

We remind that the R-operator acts on the tensor product V1 ⊗V2 = Vρ ⊗Vσ. Let us note that
with such normalization the eigenvalues of the R-operator possess the following properties:

R1,n
ρσ (λ)

∣∣
n=σ12

= R
1,0
ρσ′(λ)

∣∣
σ′=(σ2,σ1,σ3)

and R2,m
ρσ (λ)

∣∣
m=σ23

= R
2,0
ρσ′(λ)

∣∣
σ′=(σ1,σ3,σ2)

.

(A.15)

It follows that the R-operator satisfies the relations

Dσ12
1 Rρσ(u) = Rρσ′(u)Dσ12

1 , (A.16a)

when σ12 is a positive integer and σ′ = P12σ and

Dσ23
2 Rρσ(u) = Rρσ′(u)Dσ23

2 , (A.16b)
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when σ23 is a positive integer and σ′ = P23σ. This implies that the coefficients r12(u)

and r23(u) in equation (4.17) are equal to 1. If both the differences σ12 and σ23 are positive
integers, then it follows from equations (A.16) that the coefficient r13(u) = 1 as well. This
relation, r13(u) = 1, remains valid for arbitrary σ12, σ13 provided that their sum, σ13, is a
positive integer. To prove this let us represent the operator W13, equation (4.25), in the
polynomial form,

W13 =
m∑

k=0

Cm
k

�(r + 1)

�(r + 1 − k)
Dm−k

2 Dm−k
1 [D1,D2]k, (A.17)

where we put m = σ13 and r = σ23. This operator maps the lowest weight vectors
�k ≡ �k,k,m−k (equation (A.7)) to 1,

W13�k = ck(m, r) · 1, ck(m, r) = m!k!
�(r + 1)

�(r + 1 − m + k)
. (A.18)

To get the necessary result it is sufficient to verify that

W13Rρσ(u)�0 = Rρσ′(u)W13�0, (A.19)

where σ′ = (σ3σ2σ1). It can be checked by straightforward calculation.

Appendix B. Lowest weight vectors

The equations on the lowest weight vectors in the dual space W (see subsection 4.1) take the
form

2H̃1� = (2x∂x + y∂y − z∂z + m1)� = µ1�, (B.1a)

2H̃2� = (2z∂z + y∂y − x∂x + m2)� = µ2�, (B.1b)

L̃12� = (
x∂2

x + ∂x(y∂y − z∂z + m1) + z∂y

)
� = 0, (B.1c)

L̃23� = (
z∂2

z + m2∂z − x∂y

)
� = 0. (B.1d)

The first two equations yield

�(x, y, z) = xAzBψ

(
xz

y

)
, (B.2)

where

A = 1
3 (2(µ1 − m1) + µ2 − m2) and B = 1

3 (2(µ2 − m2) + µ1 − m1). (B.3)

The last two equations in (B.1) result in the following equations on the function ψ(τ),
(τ = xz/y):

τ 2ψ ′(τ ) + [τ 2ψ ′′(τ ) + (2A + 2 − µ1)τψ ′(τ ) + A(A − µ1 + 1)ψ(τ)] = 0, (B.4a)

τ 2ψ ′(τ ) + [τ 2ψ ′′(τ ) + (2B + m2)τψ ′(τ ) + B(B − 1 + m2)ψ(τ)] = 0. (B.4b)

Clearly we are interested in solutions which are series in 1/τ . Provided that A(A − µ1 + 1) =
B(B − 1 + m2) = 0 equations (B.4) have the solution ψ(τ) = 1. It gives rise to the four
solutions for the function �(x, y, z):

�1 = 1, �2 = x1−m1 , �3 = z1−m2 , �4 = x1−m1z1−m2 . (B.5)

Equations (B.4) and (B.3) have another solution: B = 2 − m1 − m2, A = 2 − m1 − m2 or
1 − m1 and

ψm1,m2(τ ) = 2F0(m1 − 1,m1 + m2 − 2|1/τ), (B.6)
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So we get two more solutions for �(x, y, z)

�5 = (xz)2−m1−m2ψm1,m2

(
xz

y

)
, �6 = x1−m1z2−m1−m2ψm1,m2

(
xz

y

)
. (B.7)

If none of the numbers 1 − m1, 1 − m2, 2 − m1 − m2 is a positive integer, then only the vector
�1 belongs to the dual space W. If only one of these numbers is positive integer there are an
additional nontrivial lowest weights in the space W, �2, �3 and �5, respectively.

Let us show now that the space V
(23)
σ1σ2σ3

≡ V
(23)
m1,m2

cannot contain more than one invariant
subspace. Indeed, if the space V

(23)
σ1σ2σ3

≡ V
(23)
m1,m2

possesses an invariant subspace, then there
should exist a nontrivial, � �= 1, lowest weight vector in the dual space W with a nonzero
projection on V

(23)
m1,m2

, (�,�) �= 0 for some vector � ∈ V
(23)
m1,m2

. If there exists more than one
invariant subspace one should find at least two lowest weight vectors with this property. We
remind that space V

(23)
m1,m2

(1 −m2 is a positive integer) is spanned by the basis vectors zkxnyp,
where k � −m2. Let us count the number of the nontrivial lowest weight vectors with a
nonzero projection onto V

(23)
m1,m2

. One easily finds

• 1−m1 is a positive integer. There exist five nontrivial lowest weight vectors, �2, . . . , �6,
but only one, �2, has a nonzero projection.

• 2 − m1 − m2 is a positive integer and 1 − m1 is not. There exist two nontrivial lowest
weight vectors �3 and �5 and only last one has a nonzero projection.

• Both 1−m1 and 2−m1 −m2 are not positive integers. There are no lowest weight vectors
with nonzero projection.
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